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SPECTROSCOPY LETTERS, 8(9),  607-620 (1975) 

LASER ACTION 017 COl?LEX blOLXULEs IN THE GAS PHASE 

Pi. A. Borisevich 

I n s t i t u t e  of  Physics ,  

Minsk (USSR) 
Academy of Sciences of the  BSSR, 

F o r  t h e  pas t  t e n  yea r s  i n t e r e s t  i n  complex molecules 

a s  l a s e r  a c t i v e  media has bsen unflagging. This  i n t e r e s t  

is brought about by the  p o s s i b i l i t y  t o  use a g r e a t  number 

of complex organic  compounds f o r  achieving l a s e r  a c t i o n ,  t o  

ob ta in  l a s e r  emission i n  d i f f e r e n t  s p e c t r a l  reg ions  and t o  

tune the  frequency o f  r a d i a t i o n  over  a wide range of fre- 

quencies employing a s i n g l e  a c t i v e  medium, as w e l l  as by the  

a v a i l a b i l i t y  and low c o s t  o f  many organic  compounds. 

The l a s e r s  i n  which complex molecules in the  vapor 

phase a re  used a s  e c t i v e  media have e s s e n t i a l l y  %he same 

m e r i t s  RS t h e  l i q u i d  phase l a s e r s .  I n  add i t ion ,  low l a s e r  

beam diverEence m a y  be expected when using gaseous medium 

s ince  the  l a t t e r  is  o p t i c a l l y  more  homogeneous than  a so lu-  

t i o n ;  a l s o ,  i f  n e c e s s a q ,  the a c t i v e  medium may be pumped 

through the  c e l l  wi th  a high f l o w  r a t e .  'The vapor s p e c t r a  

a re  i n  genera l  b lue-sh i f ted  wi%h re spec t  t o  the  s o l u t i o n  

spoc t r a ;  t h i s  makes it poss ib l e  t o  o b t a i n  l a s e r  a c t i o n  a t  
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60 8 BORISEVICH 

s h o r t e r  wavelengths. The achievement of l a s e r  a c t i o n  of  com- 

p lex  organic  molecules i n  gas s t a t e  s i g n i f i e s  t h e  introduc-  

t i o n  of a new research  method f o r  ti12 s tudy  of p r a c t i c a l l y  

f r e e  molecules, the i n t e r a c t i o n  among which is reduced t o  a 

minimum. 

Lkpcr-imentally the  c r e a t i o n  of organic  vapor  l a s a r s  is 

more complicated than t h a t  of the  l i q u i d  phase lasers. There 

a re  a l s o  e s s e n t i a l  d i f f e r e n c e s  and c l i f f  i c u l t i e s  in performing 

the  l a s e r  a c t i o n  o f  complex moleculos i n  t h e  vapor phase. 

It is well-known t h a t  i n  r a r e f i e d  vapor  t h e  excess  ( o r  

def ic iency)  of v i b r a t i o n a l  energy, compared t o  equilibrium va- 

l u e s ,  gained by molecules due t o  e x c i t a t i o n  process  is con- 

served during the  l i f e t i m e  o f  exc i t ed  molecules [I,2] . As a 

r e s u l t ,  the  f luorescence :;pectra, t he  quantum y i e l d  and f luo-  

rescence l i f e t i m e  of vapor depend upon the  frequency of t h e  

e x c i t i n g  radia5ion.  On inc reas ing  t h e  energy of t h e  e x c i t i n g  

quantum t h e  d i f f u s e  f luorescence s p e c t r a  become broadened, 

the diffuse-banded spec t r a  also become broadened and they  gra- 

dua l ly  l o s e  t h e i r  v i b r a t i o n a l  s t r u c t u m .  A t  the  same time t h e  

peaks of diffuse-banded f luorescence spectrum s h i f t  slightly 

t o  longer  wrlvelenp$,hs wbereas the  p o s i t i o n  o f  d i f f u s e  spec t -  

ra remains f ixed .  Therefore ,  i n  the  vapor phase when high ener- 

g i e s  of e x c i t i n g  quanta a r e  used molecular r a d i a t i v e  t r a n s i -  

t i o n s  t o  h i she r ,  vie&ly popiilatcd v i b r a t i o n a l  l e v e l s  of t he  

ground s t a t e  take place,  ‘which i n  genera l  favoi i rs  t h e  a t t a i n -  

ment of inveI%eu populat ion.  IIowever, the  p robab i l i t y  o f  non- 

r ad ia t ive  t r a n s i t  i o n s  usua l ly  increases  wi th  the  vi’3ratiorizil 

e n c - q y  content  o f  the e x i t e d  xolecules, which l eads  t o  de- 
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COMPLEX MOLECULES IN THE GAS PHASE 609 

crease of fluorescence quantum yie ld  and l i fe t ime and lowers 

the a b i l i t y  of lasing. The rad ia t ion less  t r a n s i t i o n  probabi- 

l i t y  can be affected by adding chemically i n e r t  foreign ga- 

ses  [1,3] . If vapor is  exci ted by radiat ion the frequency 

of which is higher than inversion frequency, the radiation- 

l e s s  t r a n s i t i o n  probabi l i ty  decreases on the addition of f o -  

reign gas due t o  the  t r a n s f e r  of excess of molecular vibra- 

t i o n a l  energy from the excited molecules t o  foreign gas mo- 

l ecu les  ( s t a b i l i z a t i o n  o f  exci ted molecules). If the exci- 

t i n g  radiat ion frequency i s  lower than the frequency of in- 

version, the  in te rac t ion  of the exci ted molecules w i t h  the  

foreign gas molecules increases the v ibra t iona l  energy con- 

t e n t  of excited molecules and a s  a r e s u l t  the  rad ia t ion less  

t r a n s i t i o n  probabi l i ty  rises. The foreign gas addi t ion t o  

the vapor w i l l  contribute a l so  t o  more rapid attainment of 

equilibrium d i s t r i b u t i o n  over v ibra t iona l  l e v e l s  of molecules, 

which are  coming i n t o  the ground s t a t e  from the exci ted s t a t e .  

Increasing the temperature of  vapor r e s u l t s  i n  the broadening 

of t h e  vibrat ional  energy d i s t r i b u t i o n  of molecules i n  both 

the  ground and exci ted e lec t ronic  states. A l l  the above must 

be taken i n t o  account when choosing the optimum conditions 

f o r  obtaining the l a s e r  act ion of complex molecules i n  t h e  

gas phase. 

, The f i r s t  organic vapor l a s e r  w a s  created i n  I973 (41 . 
The act ive medium of t h i s  l a s e r  was the  I,4-di-[2-(5-phenyl- 

oxazolyl)] -benzene (POPOP) vapor, s t a b i l i z e d  by pentane. The 

pumping was performed w i t h  longitudinal geometry by second 

harmonic of ruby laser .  The l a s e r  produced emission w i t h  the 
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610 BORIS EVI CH 

band maximun 1.ocated a t  398 nm and was operated i n  the tea- 

peratum range 220-25O0C. 

Later  the l a s e r  ac t ion  of POPOP vapor and the pmper- 

. The t i e s  of l a s e r  emission were reported i n  papers [5-9] 

l a s e r  act ion was achieved a l s o  i n  I ,4-di-[2-( 5-n-totyloxazo- 

l y l i  -benzene 171 

lems of vapor laser act ion were t r e a t e d  t h e o r e t i c a l l y  [ 10,111 , 
and dimethyl-POPOP [9] vapors. The prob- 

Mean f r e e  time 2-I f o r  c o l l i s i o n s  between the excited 

molecule and the fo re ign  gas molecules must be f a r  l e s s  than 

the l i f e t ime  of exci ted molecule f o r  the  removal of the vib- 

r a t i o n a l  energy excess from the  l a t t e r  t o  be e f f ec t ive .  I n  

the case of high volume dens i t i e s  of the pumping r ad ia t ion  

U 

l ecu le  T w i l l  be given by: 

and emitted r ad ia t ion  Uem the l i f e t ime  of the exci ted mo- 
P 

r-' = k + B U + BemUBm, (1) P P  

where k i s  the r a t e  of spontaneous depopulation of the ex- 

c i t e d  s t a t e ,  BpUp and Bemuem a m  the  r a t e s  of depopulation 

stimulated by radiation. When k P  B U 

does n o t  depend on r ad ia t ion  density and when k<< B U + Bemuem 

L changes i n  inverse proport;ion t o  r ad ia t ion  density. There- 

fo re ,  for the  exci ted molecules t o  be s t a b i l i z e d  e f f e c t i v e l y ,  

pressures of the order of I atmosphere are  i n s u f f i c i e n t  a t  

high exci t ing r ad ia t ion  dens i t i e s .  

If a chosen compound has a high gain and a s u f f i c i e n t  

+ Bemuem the l i f e t h e  P P  

P P  
n. 

vapor pressure can be obtained s o  t h a t  the exc i t i ng  r ad ia t ion  

i s  absorbed almost completely when passing through the act ive 

medium, *hen the l a s e r  act ion is observed a t  Low pressures of 

foreign gases as w e l l  as i n  a pure vapor. 
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COMPLEX MOLECULES IN THE GAS PHASE 6 11 

The POPOP and TOPOT vapor l a s e r  emission spec t r a  [7J  

are shown i n  Fig. I. The longi tudinal  pumping with a ruby 

l a s e r  second harmonic was used. The vapors of these com- 

pounds without fo re ign  gases a t  temperatures 270-3OO0C pro- 

duce stimulated emission bands, the wavelerwths of emission 

band m a x i m u m  A,, 
and the half-widths being about 4 nm. 

being 383 nm and 393 nm, respect ively,  

The l a s e r  emission bands s h i f t  t o  the long-wavelength 

s ide  with increasing foreign gas pressure. When pentane pres- 

sure  is 7 atm double-band emission spectrum ( Aem 385 and 

Figure I 

Vapor l a s e r  emission spectra ,  a- POPOP: I - r a r e f i e d  vapor 
(T=270°C, Pz0.5 Torr); 2-4  - vapor s t a b i l i z e d  by pentane 

x I 0 ~ I c m - ~ ( 4 ) .  b - TOPOT: I - r a r e f i e d  vapor (T-500°G, 
P=I.O Torr), 2 - vapor s t a b i l i z e d  by pentane (T=280°C), 

(T=240°C: Cpentane = I.3xI020(2), 6 . 0 ~ 1 0 ~ ~  ( 3 )  and 4 . 0 ~  

Cpentane = 6 O X I O ~ ~ C ~ - ~  
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612 BORISEVICH 

403 nm) is  observed (see Fig. Ia, Spectrum 2). When pentane 

concentration ( Cf) is increased up t o  4. I021~m'3, the wave- 

length of t h e  emission band peak of' POPOP increases from 383 

t o  4-00 nm, and xem of TOPOT changes from 393 t o  404 nm 

with pentane concentration increasing u? t o  3.2.IO2I 

This can be explained by the f a c t  t h a t  with increasing f o -  

reign gas preasure the absorption and fluorescence spectra  

of  vapor and ccnsequently the st imulated emission spectrum 

are  red-shifted. T r i p l e t  absorption spec t r a  which play an 

important ro l e  i n  the shaping of t h e  POPOP and TOPOT vapor 

l a s e r  emission spec t r a  as w i l l  be shown l a t e r ,  are s t rongly 

affected by the foreign gases as well  [I2,13] . 
The changes i n  l a s e r  emission when gradually passing 

f rom so lu t ion  t o  r a re f i ed  vapors have been invest igated and 

the temperature dependence data  have been obtained [7] . 
Fig.2 gives TOPOT l a s e r  emission spec t r a  i n  d i f f e ren t  s t a t e s  

of  aggregation. The conditions under which these s p e c t m  have 

been obtained and the wavelength of l a se r  emission band peaks 

are presented i n  Table I. Saturated so lu t ions  and vapors were 

used. The r e f l ec t ion  i cd ices  of t h e  resonator  mirrors f o r  

X=YOO run were 93 and 97%. 

With increased so lu t ion  temperature s h i f t s  s l i g h t -  

l y  t o  s h o r t e r  wavelength and a t  T=I03'C the l a s e r  emission 

becomes double-banded. The two bands of l a s e r  emission are 

observed a l s o  when passing from so lu t ion  t o  vapor  near t he  

c r i t i c a l  point. The difrerence of  l a s e r  emission band f r e -  

quencies is approximately equal t o  400 cm" tha t  cloes not 

correspond t o  v ib ra t iona l  s t ruc tu re  of TOPOT stirnulated emis- 

s ion spectrum. Only one band of l a s e r  emission is observed 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
4
:
2
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



COMPLEX MOLECULES I N  THE GAS PHASE 613 

Figure 2 

Laser emission spectra  of TOPOT i n  solution and in vapor. 
I - 8 correspond t o  item Nos. of  spec t ra  given i n  Table I. 

(see Fig.2, spectra  7 and 8 )  i f  t he  cavity Q-factor is re- 

duced. Lowering of the pumping power r e s u l t s  i n  more rapid 

drop of the i n t e n s i t y  of the long-wavelength band i n  the 

two-banded emission spectnm. Near the threshold +he emis- 

s ion  becomes single-banded. The mrefied vapors and those 

w i t h  the r e l a t i v e l y  sl ight  pentane concentration (4.5 atm) 

produce l a s e r  emission w i t h  a s ing le  band (Fig.Ib). The po- 

s i t i o n  of t h e  maximum of vapor l a s e r  cmlssion band is prac- 

t i c a l l y  temperature independent. 
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614 BORLSEVICH 

TABLE I 

Wavelengths of the Laser Emission Band Maxima of  TOPOT 

No. of 
spectrum T ,  OC 

Sta te  of 
hem, nm aggregation Cf, cm-3 1 

~~ 

a )  one resonator mirror is absent 
b) the boGh m i r r o r s  are absent 

I 

According t o  estimates made i n  paper [I41 the t r i p l e t -  

t r i p l e t  molar absorptivity xT of the vapor i n  the T-T ab- 

sorption maximum ( 

(POPOP) and I200 l . i~o le -~ . cm '~  (TOPOT). The molar absorpti- 

v i t y  8 
t o  49000 and 48000 1- mole-** c d ' ,  respectively. 

=400 nm) a t  T=330°C is I250 lomole-I- ern" 

S f o r  vapor S-S absorption of  these substances is equal 

T The low values of t r i p l e t  absorpGivity of POPOP 

and 1pOPOT vapor represent one of the main reasons which fa- 

voured observation of l a s e r  action f o r  the first time i n  the 

vapors of t h i s  par t icular  group of compounds. Since the spect- 
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COMPLEX MOLECULES I N  THE GAS PHASE 615 

ra of t r i p l e t - t r i p l e t  absorp t ion  of t h e w  compounds i n  va- 

pors  and sol .ut ions possess  d i s t i n c t  v i b r a t i o n a l  s t r u c t u r e  and 

s t rong ly  over lap  wi th  t h e  f luorescence  spec t r a ,  t h e  t r i p l e t  

absorp t ion  i n  some s p e c t r a l  reg ions  a t  concent ra t ions  s u f f i -  

c i e n t  f o r  l a s e r  a c t i o n  becomes a considerable  l o s s  source.  

The t r i p l e t  absorp t ion  s p e c t r a  toge the r  wi th  the  s t imu la t ed  

emission spec t r a ,  which p r a c t i c a l l y  c.oinci.de with the  f l u o -  

rescence s p e c t r a ,  def ine  mainly the  l a s e r  emission s p e c t m  

a s  can be seen  f r o m  Figs .  3 and 4, The emission band of ra- 

r e f i e d  POPOP vapor  is observed i n  t h e  f luorescence  band main 

peak where the  t r i p l e t  absorp t ion  has a sharp  minimum. Addi- 

t i o n  of hexane a t  high p res su res  l eads  t o  change of the  rela- 

t i v e  p o s i t i o n  of the  t r i p l e t  absorp t ion  and f luorescence spect-  

ra .  The peak of t h e  most  i n t ens ive  t r i p l e t  absorp t ion  band is 

now s h i f t e d  t o  s h o r t e r  wavelength wi th  respec t  t o  the  c e n t r a l  

f luorescence  band m a x i m u .  A s  f n r  a s  t h i s  T-T band is ccnside- 

rab ly  narrower than  the  c e n t r a l  f luorescence  band t h e  g a i n  is  

s u f f i c i e n t  for l a s e r  a c t i o n  i n  the  frequency ranges l oca t ed  

t o  the  l e f t  and t o  the  r i g h t  from the  t r i p l e t  absorp t ion  peak 

and as a r e s u l t  t h e  double-banded l a s e r  eroission is observed. 

Increase i n  hexane pressure  l e a d s  t o  f u r t h e r  change i n  t h e  

mutual p o s i t i o n  of the s p e c t m .  Tte  l a s e r  emission spectrum 

becomes single-banded, t h e  eruissiol; band being loca ted  b2.t;- 

ween the  most i n t ens ive  peaks i n  t h e  f l u o E s c e n c e  and t r i p -  

l e t  absorp t ion  spec t ra .  The s i n g l e  emission band loca ted  be t -  

ween the  f luorescence  and t r i p l e t  absorp t ion  band m a x i m  is 

observed f o r  POPOP s o l u t i o n  i n  h-xane. I n  t h i s  case the  t r i p -  

l e t  absorp t ion  s p e c t r m  is a l s o  superimposed on t h e  s t imula-  
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616 BORISEVLCH 

E'1gure 3 
Spectra of s inglet-s inglet  absorption (I) 
t r i p l e t - t r i p l e t  absorption (3,  3' ) and laser emission (4) 
of POPOP. The conditions of the experiments are presented 
i n  Table 2. 

fluorescence (2) 
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COMPLEX MOLECULES IN THE GAS PHASE 617 

- f  

Figure 4 

Spectra of  s inglet-s inglet  absorption (I), fluorescence (21, 
t r i p l e t - t r i p l e t  absorption (3,3' ) and laser emission (4) of 
T O T ,  The conditions of cxperbcents are presented i n  Table 2. 

t e a  emission spectrum, but the s t ruc ture  of the former is 

sharper. The emission band appears i n  the spectral range 

where suf f ic ien t ly  high in tens i ty  i n  the  st imulated emission 
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618 BORISEVICH 

Compound 

TABm 2 

The Condit ions of Obtaining Spec t r a  are Shown i n  Fig. 3 and 4 

T , o c l f o ~ ~ g n / ~ a s  oreign Lon- 1 A m p  11111 ! c e n t r a t  ion.  
Spect- S t a t e  of 
rum aggregat i on  

POPOP Ia Vapor 320 0 390 
I 320 n i t rogen ,  7.4~10'~ 

pentane 

I1 260 hexane 3 . 0 ~ 1 0 ~ ~  382, 395 

I11 260 hexane 7.5~10~~ 39 2 

Iv 260 hexane 3.0~10~' 399 9 5 
v s01uti011 20 

i n  hexane 
408 

TOPCT Ia Vapor 330 0 390, 407 
I 330 pentane 7 . 4 ~ 1 0 ~ ~  

I1 260 pentane 3.2~10~' 404, 412 

111 Solu t ion  20 
i n  pentane 

4 I4 

a )  t h e  condi t ions  of ob ta in ing  t h e  t r i p l e t  absorp t ion  
s p e c t r a  3 ' .  

spcct;rum is accompanied by low t r i p l e t - t r i p l e t  absorpt ion.  

Analogous r e s u l t s  have been obtained f o r  TOPOT (see Fig.4). 

I n  genera l  t h e r e  is a sa t i s foc to -y  c o r r e l a t i o n  between 

the s p e c t r a  of !.ns;er emission, tr!Lplet absorp t ion  a m !  stirnu- 

l a t e d  emission of  t h e  compounds studied. The s i n g l e t - s i n g l e t  

abmrpt i .cn -from h ich  cxc l t ed  levels !la:: riot  heen measured. 

S i n c  e t he c o r r e  1:l t i c1 n b e t  weci n t hc aScva -mer!t i '3x8 d s ?e c +, ra 

takes plncc Hitkout aLlwiing f o r  t;fle 3-3 ab',:oIp?;icn by ex- 
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COMPLEX MOLECULES IN THE GAS PHASE 619 

c i t e d  molecules, i t  m a y  be concluded t h a t  the l a t t e r  does 

not  influence e s s e n t i a l l y  the l a s e r  emission spectra  of the 

compounds investigated.  

The pulse of  vapor l a s e r  emission p r a c t i c a l l y  r epea t s  

the pumping pulse [6] . Accordiq t o  the estimates [ 8 ]  t h e  

POPOP vapor gain i s  I cm". The value of 0.6 crn" i s  obtained. 

experimentally [ 9 ]  . The output power of  POPOP vapor l a s e r  

with nitrogen l a s e r  transverse pumping [ 91 increases  rapid- 

l y  with increasing pumping power and approaches 30 kw a t  

400 kw pumping. The s a t u r a t i o n  is not observed and higher  

l a s e r  emission power is l i k e l y  t o  be expected with the  use 

of g r e a t e r  pumping power. 

I n  the new type of  l a s e r s  described the pwping is 

performed op t i ca l ly .  The existence o f  l a s e r  ac t ion  of com- 

plex organic molecules i n  the gas phase gives c e r t a i n  hope 

t o  c r ea t e  l a s e r s  on the b a s i s  of vapors of complex organic 

compounds which w i l l  e f f e c t i v e l y  transform e l e c t r i c  energy 

d i r e c t l y  i n t o  the energy of l i g h t .  
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